Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach.

Identifieur interne : 000594 ( Main/Exploration ); précédent : 000593; suivant : 000595

Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach.

Auteurs : Xiao Li [États-Unis] ; Zhen Qin [Canada] ; Hao Fu [Canada] ; Ted Li [Canada] ; Ran Peng [Canada] ; Zhijie Li [Canada] ; James M. Rini [Canada] ; Xinyu Liu [Canada]

Source :

RBID : pubmed:33461849

Abstract

Accurate, rapid, and low-cost molecular diagnostics is essential in managing outbreaks of infectious diseases, such as the pandemic of coronavirus disease 2019 (COVID-19). Accordingly, microfluidic paper-based analytical devices (μPADs) have emerged as promising diagnostic tools. Among the extensive efforts to improve the performance and usability of diagnostic tools, biosensing mechanisms based on electrochemical impedance spectroscopy (EIS) have shown great promise because of their label-free operation and high sensitivity. However, the method to improve EIS biosensing on μPADs is less explored. Here, we present an experimental approach to enhancing the performance of paper-based EIS biosensors featuring zinc oxide nanowires (ZnO NWs) directly grown on working electrodes (WEs). Through a comparison of different EIS settings and an examination of ZnO-NW effects on EIS measurements, we show that ZnO-NW-enhanced WEs function reliably with Faradaic processes utilizing iron-based electron mediators. We calibrate paper-based EIS biosensors with different morphologies of ZnO NWs and achieve a low limit of detection (0.4 pg ml-1) in detecting p24 antigen as a marker for human immunodeficiency virus (HIV). Through microscopic imaging and electrochemical characterization, we reveal that the morphological and the electrochemical surface areas of ZnO-NW-enhanced WEs indicate the sensitivities and sensing ranges of the EIS nanobiosensors. Finally, we report that the EIS nanobiosensors are capable of differentiating the concentrations (blank, 10 ng ml-1, 100 ng ml-1, and 1 μg ml-1) of IgG antibody (CR3022) to SARS-CoV-2 in human serum samples, demonstrating the efficacy of these devices for COVID-19 diagnosis. This work provides a methodology for the rational design of high-performance EIS μPADs and has the potential to facilitate diagnosis in pandemics.

DOI: 10.1016/j.bios.2020.112672
PubMed: 33461849
PubMed Central: PMC7550100


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach.</title>
<author>
<name sortKey="Li, Xiao" sort="Li, Xiao" uniqKey="Li X" first="Xiao" last="Li">Xiao Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Chemistry, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Chemistry, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Montréal</settlement>
</placeName>
<orgName type="university">Université McGill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Qin, Zhen" sort="Qin, Zhen" uniqKey="Qin Z" first="Zhen" last="Qin">Zhen Qin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fu, Hao" sort="Fu, Hao" uniqKey="Fu H" first="Hao" last="Fu">Hao Fu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical Engineering, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Ted" sort="Li, Ted" uniqKey="Li T" first="Ted" last="Li">Ted Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical Engineering, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peng, Ran" sort="Peng, Ran" uniqKey="Peng R" first="Ran" last="Peng">Ran Peng</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Zhijie" sort="Li, Zhijie" uniqKey="Li Z" first="Zhijie" last="Li">Zhijie Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rini, James M" sort="Rini, James M" uniqKey="Rini J" first="James M" last="Rini">James M. Rini</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xinyu" sort="Liu, Xinyu" uniqKey="Liu X" first="Xinyu" last="Liu">Xinyu Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada. Electronic address: xyliu@mie.utoronto.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33461849</idno>
<idno type="pmid">33461849</idno>
<idno type="doi">10.1016/j.bios.2020.112672</idno>
<idno type="pmc">PMC7550100</idno>
<idno type="wicri:Area/Main/Corpus">000031</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000031</idno>
<idno type="wicri:Area/Main/Curation">000031</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000031</idno>
<idno type="wicri:Area/Main/Exploration">000031</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach.</title>
<author>
<name sortKey="Li, Xiao" sort="Li, Xiao" uniqKey="Li X" first="Xiao" last="Li">Xiao Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Chemistry, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Chemistry, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Montréal</settlement>
</placeName>
<orgName type="university">Université McGill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Qin, Zhen" sort="Qin, Zhen" uniqKey="Qin Z" first="Zhen" last="Qin">Zhen Qin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fu, Hao" sort="Fu, Hao" uniqKey="Fu H" first="Hao" last="Fu">Hao Fu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical Engineering, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Ted" sort="Li, Ted" uniqKey="Li T" first="Ted" last="Li">Ted Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical Engineering, McGill University, Montreal, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peng, Ran" sort="Peng, Ran" uniqKey="Peng R" first="Ran" last="Peng">Ran Peng</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Zhijie" sort="Li, Zhijie" uniqKey="Li Z" first="Zhijie" last="Li">Zhijie Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rini, James M" sort="Rini, James M" uniqKey="Rini J" first="James M" last="Rini">James M. Rini</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xinyu" sort="Liu, Xinyu" uniqKey="Liu X" first="Xinyu" last="Liu">Xinyu Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada. Electronic address: xyliu@mie.utoronto.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biosensors & bioelectronics</title>
<idno type="eISSN">1873-4235</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Accurate, rapid, and low-cost molecular diagnostics is essential in managing outbreaks of infectious diseases, such as the pandemic of coronavirus disease 2019 (COVID-19). Accordingly, microfluidic paper-based analytical devices (μPADs) have emerged as promising diagnostic tools. Among the extensive efforts to improve the performance and usability of diagnostic tools, biosensing mechanisms based on electrochemical impedance spectroscopy (EIS) have shown great promise because of their label-free operation and high sensitivity. However, the method to improve EIS biosensing on μPADs is less explored. Here, we present an experimental approach to enhancing the performance of paper-based EIS biosensors featuring zinc oxide nanowires (ZnO NWs) directly grown on working electrodes (WEs). Through a comparison of different EIS settings and an examination of ZnO-NW effects on EIS measurements, we show that ZnO-NW-enhanced WEs function reliably with Faradaic processes utilizing iron-based electron mediators. We calibrate paper-based EIS biosensors with different morphologies of ZnO NWs and achieve a low limit of detection (0.4 pg ml
<sup>-1</sup>
) in detecting p24 antigen as a marker for human immunodeficiency virus (HIV). Through microscopic imaging and electrochemical characterization, we reveal that the morphological and the electrochemical surface areas of ZnO-NW-enhanced WEs indicate the sensitivities and sensing ranges of the EIS nanobiosensors. Finally, we report that the EIS nanobiosensors are capable of differentiating the concentrations (blank, 10 ng ml
<sup>-1</sup>
, 100 ng ml
<sup>-1</sup>
, and 1 μg ml
<sup>-1</sup>
) of IgG antibody (CR3022) to SARS-CoV-2 in human serum samples, demonstrating the efficacy of these devices for COVID-19 diagnosis. This work provides a methodology for the rational design of high-performance EIS μPADs and has the potential to facilitate diagnosis in pandemics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33461849</PMID>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4235</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Biosensors & bioelectronics</Title>
<ISOAbbreviation>Biosens Bioelectron</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach.</ArticleTitle>
<Pagination>
<MedlinePgn>112672</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0956-5663(20)30661-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bios.2020.112672</ELocationID>
<Abstract>
<AbstractText>Accurate, rapid, and low-cost molecular diagnostics is essential in managing outbreaks of infectious diseases, such as the pandemic of coronavirus disease 2019 (COVID-19). Accordingly, microfluidic paper-based analytical devices (μPADs) have emerged as promising diagnostic tools. Among the extensive efforts to improve the performance and usability of diagnostic tools, biosensing mechanisms based on electrochemical impedance spectroscopy (EIS) have shown great promise because of their label-free operation and high sensitivity. However, the method to improve EIS biosensing on μPADs is less explored. Here, we present an experimental approach to enhancing the performance of paper-based EIS biosensors featuring zinc oxide nanowires (ZnO NWs) directly grown on working electrodes (WEs). Through a comparison of different EIS settings and an examination of ZnO-NW effects on EIS measurements, we show that ZnO-NW-enhanced WEs function reliably with Faradaic processes utilizing iron-based electron mediators. We calibrate paper-based EIS biosensors with different morphologies of ZnO NWs and achieve a low limit of detection (0.4 pg ml
<sup>-1</sup>
) in detecting p24 antigen as a marker for human immunodeficiency virus (HIV). Through microscopic imaging and electrochemical characterization, we reveal that the morphological and the electrochemical surface areas of ZnO-NW-enhanced WEs indicate the sensitivities and sensing ranges of the EIS nanobiosensors. Finally, we report that the EIS nanobiosensors are capable of differentiating the concentrations (blank, 10 ng ml
<sup>-1</sup>
, 100 ng ml
<sup>-1</sup>
, and 1 μg ml
<sup>-1</sup>
) of IgG antibody (CR3022) to SARS-CoV-2 in human serum samples, demonstrating the efficacy of these devices for COVID-19 diagnosis. This work provides a methodology for the rational design of high-performance EIS μPADs and has the potential to facilitate diagnosis in pandemics.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Chemistry, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Zhen</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Ran</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Zhijie</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Toronto, Toronto, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rini</LastName>
<ForeName>James M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Toronto, Toronto, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Xinyu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, McGill University, Montreal, QC, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada. Electronic address: xyliu@mie.utoronto.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biosens Bioelectron</MedlineTA>
<NlmUniqueID>9001289</NlmUniqueID>
<ISSNLinking>0956-5663</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Electrochemical impedance biosensing</Keyword>
<Keyword MajorTopicYN="N">HIV</Keyword>
<Keyword MajorTopicYN="N">Microfluidic paper-based analytical devices</Keyword>
<Keyword MajorTopicYN="N">Nanowires</Keyword>
<Keyword MajorTopicYN="N">Point-of-care diagnosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>43</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33461849</ArticleId>
<ArticleId IdType="pii">S0956-5663(20)30661-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.bios.2020.112672</ArticleId>
<ArticleId IdType="pmc">PMC7550100</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioanalysis. 2011 Dec;3(23):2589-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Feb 20;382(8):727-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31978945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2020 Jul;17(7):773-775</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32467617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2013 Nov 19;85(22):11068-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24117341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2017 Jun 28;117(12):8447-8480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28627178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2010 Jun 28;49(28):4771-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20512830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electroanalysis. 2007 May 16;19(12):1239-1257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18176631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 02;7:43175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28251986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2010 Apr 15;201 Suppl 1:S59-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20225948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Sci OA. 2017 Jul 07;3(3):FSO224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28884017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Matter. 2020 Sep 2;3(3):628-651</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32838297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Mol Diagn. 2017 Apr;17(4):351-366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28103450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2020 May 26;58(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32245835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Poverty. 2014 Jul 31;3:21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25110585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2010 Aug;2(8):2409-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20735115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):470-473</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Rheumatol. 2020 Jul;2(7):e384-e385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32835238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2017 Jan 3;89(1):71-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27936612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talanta. 2013 Jul 15;111:62-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 16;5:12231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26178973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2013 Jul 7;42(13):5944-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2010 Jan 1;82(1):3-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20000334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2020 Sep 21;20(18):3322-3333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32766659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 Jun;26(6):818-819</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32341581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2017 Mar 29;17(7):1206-1249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28251200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2020 Apr 28;14(4):3822-3835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32223179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Healthc Mater. 2016 Jun;5(11):1378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27275629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chim Acta. 2014 Jul 11;836:34-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24974868</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Ontario</li>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université McGill</li>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Li, Xiao" sort="Li, Xiao" uniqKey="Li X" first="Xiao" last="Li">Xiao Li</name>
</region>
</country>
<country name="Canada">
<region name="Ontario">
<name sortKey="Qin, Zhen" sort="Qin, Zhen" uniqKey="Qin Z" first="Zhen" last="Qin">Zhen Qin</name>
</region>
<name sortKey="Fu, Hao" sort="Fu, Hao" uniqKey="Fu H" first="Hao" last="Fu">Hao Fu</name>
<name sortKey="Li, Ted" sort="Li, Ted" uniqKey="Li T" first="Ted" last="Li">Ted Li</name>
<name sortKey="Li, Zhijie" sort="Li, Zhijie" uniqKey="Li Z" first="Zhijie" last="Li">Zhijie Li</name>
<name sortKey="Liu, Xinyu" sort="Liu, Xinyu" uniqKey="Liu X" first="Xinyu" last="Liu">Xinyu Liu</name>
<name sortKey="Peng, Ran" sort="Peng, Ran" uniqKey="Peng R" first="Ran" last="Peng">Ran Peng</name>
<name sortKey="Rini, James M" sort="Rini, James M" uniqKey="Rini J" first="James M" last="Rini">James M. Rini</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000594 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000594 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33461849
   |texte=   Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33461849" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021